skip to main content


Search for: All records

Creators/Authors contains: "Pop, Flavius"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In recent years, there has been an increased interest in continuous monitoring of patients and their Implanted Medical Devices (IMDs) with different wireless technologies such as ultrasounds. This paper demonstrates a high data-rate intrabody communication link based on Lithium Niobate (LN) Piezoelectric Micromachined Ultrasonic Transducers (pMUTs). The properties of the LN allow to activate multiple flexural mode of vibration with only top electrodes. When operating in materials like the human tissue, these modes are merging and forming a large communication bandwidth. Such large bandwidth, up to 400 kHz, allows for a high-data rate communication link for IMDs. Here we demonstrate a full communication link in a tissue phantom with a fabricated LN pMUT array of 225 elements with an area of just 3 by 3 mm square, showing data-rates up to 800 kbits/s, starting from 3.5 cm and going up to 13.5 cm, which covers the vast majority of IMDs.

     
    more » « less
  2. The present work details a novel approach to increase the transmitting sensitivity of piezoelectric micromachined ultrasonic transducer arrays and performing the direct modulation of digital information on the same device. The direct modulation system can reach 3× higher signal-to-noise ratio level and 3× higher communication range (from 6.2 cm boosted to 18.6 cm) when compared to more traditional continuous wave drive at the same energy consumption levels. When compared for the same transmission performance, the direct modulation consumes 80% less energy compared to the continues wave. The increased performance is achieved with a switching circuit that allows to generate a short high-AC voltage on the ultrasonic array, by using an LC tank and a bipolar junction transistor, starting with a low-DC voltage, making it CMOS-compatible. Since the modulation signal can directly be formed by the transmitted bits (on/off keying encoding) this also serve as the modulation for the data itself, hence direct modulation. The working principle of the circuit is described, optimization is performed relative to several circuital parameters and a high-performance experimental application is demonstrated. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)